Verifiable Mixing Protocol for Bitcoin

Morgan Locks
December 10, 2015

Abstract. I outline a protocol to allow mixing services in blockchain-based
currencies such as Bitcoin to prove that they have paid every user of the service.
This is done without revealing compromising information that would permit
linking of users’ inputs and outputs in a way that normal mixing is not vul-
nerable to. I also show an extension of this protocol to allow users to specify
multiple output addresses.

This protocol relies on an efficient zero-knowledge set-membership proof (de-
scribed in [1]) that drastically reduces the number of signatures that must be
transmitted when multiple payments are being verified simultaneously.

1 Introduction

In the Bitcoin protocol, some amount of bitcoin is associated with a particular
address, and can only be spent by users with access to the private key for
that address (the ”owner”). Addresses are not intrinsically linkable to a real
individual or group, but may become linked due to identifying operations such
as converting physical currency into bitcoins, or making transactions based on
physical services.

Mixing services allow users to trade in coins that may be linkable to them
in exchange for coins which are unlikely to be linkable to them. Due to the
anonymous nature of this process, it is not possible for users to show that an
illegitimate mixing service has failed to return money to the user, or for a mixer
to show that users who falsely claim that their money was stolen are lying. As a
result, trust can only be built slowly and unreliably. Furthermore, trust can only
be destroyed slowly and unreliably, if the mixer begins to behave illegitimately.

In order for a mixer to quickly build trust, it would be useful for it to be able
to prove to any third-party that it has paid any given user the amount which
the user is due, without revealing the address to which the user requested their
money be sent. That is the purpose of the Verifiable Mixing Protocol (VMP).

This protocol uses a set-membership proof technique created by Camenisch,
Chaabouni, and Shelat [1]. By storing a commitment to an output address
in the blockchain (the publicly visible and immutable record of transactions)
it is possible to prove in zero knowledge that the address to which the user
committed was later paid by the mixer.

2 Definitions

Set Membership Proofs and Zero-Knowledge Proofs. This paper uses
definitions from [1] and [2]. In particular, a proof of set membership is defined
as a proof of the following:

PK{(0,p): x < Com(o,p) No € D}

where o is the element which was committed to (which only the prover P
knows), p is the commitment which both the verifier V' as well as P knows, and
® is the set of elements in question.

A zero-knowledge set-membership proof is any instantiation of the above
proof system such that, after proof has been made, if V is an honest verifier, V
gains minimal information about o.

It is possible to convert an honest-verifier zero-knowledge proof into a gen-
eral zero-knowledge proof [3]. Therefore, this paper will only discuss the simpler
case of an honest verifier.

Bilinear Groups. VMP uses a bilinear group scheme for signature verifi-
cation. In particular:

e (G, G2, and G are cyclic groups of prime order p.
e ¢ and go are generators for G; and G5 respectively

e ¢ is a bilinear pairing G; x Gy — G such that the following hold:
Yu € G1,Yv € Gy,Va,b € Z, e(u®,v*) = e(u,v)®
e(g1,92) # 1 i.e. g1 and g2 map to a generator of G

Commitments. The VMP protocol uses Pedersen commitments of the
form Com(o) = g°h", where g and h are group generators for G in the bilinear
mapping scheme described above.

Boneh-Boyen Signatures. Bilinear mappings are used in VMP to con-
struct Boneh-Boyen signatures as described in [1] and [2]. In this case, p =
|G1| = |G2| = |Gr|. The signer has a private key « € Z, and publishes some
generator g € G such that g # 1. The signer also publishes a public key g*. For
a message m, sig(m) = g*/**™. The signature can be verified by checking that
e(o,g*g™) = e(g,g). This scheme has been shown to be secure under the strong
Diffie-Hellman assumption for the bilinear mapping scheme discussed above [1,
2].

Note that all calculations are performed within cyclic groups. The ’/’ oper-
ator denotes inversion.

3 VMP

3.1 Summary

The user stores a commitment to an output address in the transaction used to
send the payment to the mixer. This transaction (and therefore the commit-
ment) are visible to all users of the Bitcoin protocol. The mixer publishes all
of its receiving addresses and outgoing transactions, without revealing which
input payment corresponds to each output payment. Then, after a delay suffi-
cient to allow the mixer to pay out, a zero-knowledge set membership proof is
used to show that the address committed to by the user is a member of the set
of addresses payed by the mixer.

The mixer can prove to third parties not only that it payed the user, but
that it payed the user enough. This is achieved by reducing the set of outgoing
transactions to the set of outgoing transactions of sufficient value. This poten-
tially reduces the anonymity of the mixing operation, simply due to restrictions
in the size of the set being analyzed. This is discussed in section 4: Losses in
Anonymity.

This protocol assumes secure communication channels between the mixer
and users, as well as between the mixer and verifiers. All assumptions inherent
in the security of Bitcoin are also held here.

3.2 User-Mixer Interaction

The goal of this interaction is to establish a commitment to an output address.
First, the user sends the mixer an address, m, which is where the user wants the
mixer to send the 'mixed’ coins. The mixer should require that this address has
never been used before, to guarantee uniqueness, which greatly simplifies the
proof process. Then, the mixer sends the user a random r. I am not aware of any
possible exploitation based on users selecting particular values for r, but this
allows each party a highly unpredictable input to the commitment. The mixer
and the user both construct the commitment C = g™h". This commitment
will be included in the transaction by having a ”fake” output in the transaction
point to the commitment string instead of a real address.

When the mixer tells the user where to send the input coins, the user checks
to see if that address is one of the receiving addresses published by the mixer.
The purpose of publishing the receiving addresses is to allow verifiers to know
that they are looking at all input transactions.

If a payment is made to an address that verifiers don’t know about, it would
be possible to steal it without being provably untrustworthy. If a mixer ever
removes an address from its published set of receiving addresses, verifiers should
immediately label that mixer untrustworthy, with one exception. If the mixer
has already paid back every input transaction to that address, it can be removed.
Verifiers should continue to watch the removed address for a few blocks after
removal to make sure the mixer does not receive any payments from users who
did not detect that the address was removed in time.

Publishing input addresses also protects the mixer from attacks on its reputa-
tion by liars. It is no longer possible to claim that a transaction was a payment
to the mixer unless the transaction pays one of the mixer’s actual addresses.
Furthermore, in the case of an attacker paying one of a mixer’s real addresses
but using an improper commitment (by committing to something that isn’t an
address, for instance) the mixer should simply return the coins to sender.

Finally, the user sends the coins to the mixer and the commitment is locked
into the blockchain.

3.3 Verifier-Mixer Interaction

After some amount of time (specified by the mixer) has passed, it is guaranteed
that the mixer will have payed out to the intended address for the transaction
in question. At that point, any third-party verifier may confirm that the mixer
did indeed pay out.

The mixer maintains a publicly available list of its outgoing payment trans-
actions, 7. The output address of any transaction T; is T4; and the value of
that transaction is Ty;. All elements in T4 are unique. In order to confirm
that at least the expected value v was paid, T' may be reduced to only include
each T; for which Ty ; > v. The expected value is determined by mixer fees and
may be a range, in which case the minimum expected value should be used. T
is trusted to be complete because the mixer only stands to fail verification by

omitting elements from 7.

Information known only to the mixer is:
e 0, the address committed to by the user
e 7, the random value such that C' = g7h"
e 1, a private key used to generate signatures
Information published by the mixer (or in the blockchain) is:
e g and h, the group generators used to create the commitment
e (', the commitment

e T, the set of all outgoing transactions from the mixer to its users where
VT; €T :Ty; > v. vis the minimum expected value.

The following process is exactly the set membership proof constructed by
Camenisch, Chaabouni, and Shelat [1]. For VMP, the mixer is the prover, and
® =T4. It is included here for completeness.

Common Input: g,h, a commitment C, and a set ¢
Prover Input: o,r such that C = ¢°h" and o € &.

P _viAil 'V Verifier picks €g Z, and
sends y «— ¢g® and A; +— gr_ii for every i € @.
P v V' Prover picks v €r Z, and sends V «— Aj.

Prover and Verifier run PK{(o,r,v): C =g°h" ANV = g%}

P__aD |V Prover picks s5,t,m Cg Z, and
sends a «— e(V,g) " ¢e(g,g)" and D « g°h™.

P ¢ V' Verifier sends a random challenge ¢ € Z,.

P _2=2vzr . V' Prover sends zo «— 8 — 0c¢, 2y «— t —ve, and zr < m — TC.
Verifier checks that D = C° h*mg*s and
that a = e(V,y)" - e(V,)™ - e(g,9)™

For a discussion of the security of all steps described above, please consult
that paper.

This process is highly efficient when multiple payments are being verified.
The bottleneck in this exchange is the verifier sending |T'| elements to the mixer.
However, those signatures can be reused for further checks as long as no ele-
ments in a previous 1" are removed from the T for the current check. In other
words, as long as verification starts with large transactions and includes progres-
sively smaller ones, it is possible to efficiently verify a large number of payments
without resending any signatures.

4 Losses of Anonymity

4.1 Reduced Anonymity Sets

The largest drawback of VMP is that is requires the mixer to publish all of
their incoming and outgoing payments. This is necessary to enable payment
verification, but it can limit the size of the anonymity set for any given input
transaction.

For the naive implementation with a set fee, it is in fact possible to link each
input with an output, by identifying the output corresponding to the most ex-
pensive input (|T'| would be 1) and repeating on the now reduced set of unlinked
transactions.

This problem isn’t solved by a changed to VMP, but instead by good applica-
tion of traditional mixing methods of maintaining anonymity. Large throughput
volume, highly variable fees, or specific allowed payments sizes can all increase
the size of the anonymity set for input transactions. In particular, it would
make sense to have a cap on payment size so that there is no single largest
transaction. Large payments can always be split up into several smaller mixing
demands for this purpose.

4.2 Multiple Output Addresses

One common traditional mixing method of improving anonymity is to allow
users to specify multiple output addresses, and pay part of the mixed coins to
each address. Then, given an expected value v based on an input payment,
instead of looking at all T; such that Ty; > v, an attacker would have to look
at all T;, T} such that Ty; + Ty; > v.

It is possible to implement arbitrarily many output addresses with VMP.
The extension to the protocol is as follows:

e For single output addresses, ® = T4. For multiple output addresses, ®
is the set of concatenated addresses Ta;|Ta; where Th;,T4; € T4 and
i # j. If the number of addresses N > 3, N distinct addresses would
be concatenated. The addresses should be sorted before concatenation to
eliminate redundancy.

The size of ® increases exponentially with N. However, each signature
only ever has to be constructed once, so this would be feasible to perform
over time for small N. If the number of output addresses is unknown to
the verifier, it is possible to construct ® as the union of the signature sets
for each N < k, where k is the maximum number of output addresses
permitted. & must be public information.

® would be limited to only contain groups of elements in 7" which have
great enough value.

Formally, given a set S C T such that |S| < N, cat(S4) € @ if and only if
> s,e5Svi > v, where v is the minimum expected payout value.

e The commitment C' now commits to multiple output addresses (again,
each should never have been used before). This is done by concatenating
the (sorted) addresses and using the result of the concatenation as o in
C = ¢g?h". This does not allow the user to specify how many bitcoins are
sent to each address, as long as the sum is large enough. However, the
mixer improves its effectiveness by splitting reasonably, and therefore has
an incentive to do so. It could already expose users if it wanted to.

To verify that a user was paid in a multiple output scheme, perform the exact
same set-membership proof as described for the single-address case. Because ®
consists of groups of addresses, just the same as the commitment, the verifier
will be able to verify if the set of addresses committed to by the user is a member
of the set of sets of addresses which were paid sufficient funds to potentially be
a payout for that input transaction.

5 References

1. Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient Protocols
for Set Membership and Range Proofs. In Advances in Cryptology - ASI-
ACRYPT 2008, volume 5350 of Lecture Notes in Computer Science, pages
234-252. Springer, 2008.

2. Dan Boneh and Xavier Boyen. Short Signatures Without Random Oracles
and the SDH Assumption in Bilinear Groups. In Journal of Cryptology,
volume 21, issue 2, pages 149-177. Springer, 2007.

3. Halgren, Kolla, Sen, and Zhang. Making Classical Honest Verifier Zero
Knowledge Protocols Secure Against Quantum Attacks. In Automata,
Languages, and Programming volume 5126 of Lecture Notes in Computer
Science, pages 592-603. Springer, 2008.

