

Detecting Selfish Mining in
Bitcoin

Fangyang Cui

12/7/2015

Selfish mining is an attack on the Bitcoin network discovered by Ittay Eyal and Emin Gün Sirer1.
The attack involves a miner selectively choosing when to publish blocks that they have
discovered instead of doing so immediately. The purpose of the attack is to obtain a two block
or longer lead over the rest of the Bitcoin network. The selfish miner only publishes their blocks
when the network has caught up to the point where the honest miners are one block behind the
selfish miner. In their paper, Eyal and Sirer show that a selfish miner following these instructions
is able to obtain a higher proportion of the Bitcoin blocks than they deserve based on their
hashrate.

Miners performing selfish mining attacks can produce undesirable consequences for the rest of
the network. Because a successful selfish mining attack occurs when the selfish miner releases
a set of blocks that form a longer chain than the chain created by the rest of the network, many
orphan blocks will be created. Whenever there is an orphan block, there is a potential for
negative consequences, so a process that creates more orphan blocks can harm the viability of
Bitcoin as a method of making transactions.

Invalidating blocks that a large number of people believe to be valid can have serious
consequences. The selfish miner may not include the same set of transactions as the rest of the
network which will cause problems when the selfish miner releases his longer set of blocks.
Transactions that were included by the honest miners, but not by the selfish miner, will be
invalidated after the selfish miner releases his blocks. By turning the honest miners’ blocks into
orphans, the opportunity for a double spend attack is created as a byproduct. In response,
merchants may require a larger number of confirmations before accepting a payment which
harms the ability to use Bitcoin to make transactions.

Since the consequences of selfish mining can potentially be very large, it is important to detect
selfish mining so that the community can be informed and take action against the selfish miner.
The authors of the original selfish mining paper suggested that the amount of time taken
between consecutive blocks can potentially provide evidence of selfish mining2. When the
selfish miner publishes their longer chain, the rest of the network would need to hear about
those blocks in quick succession in order to switch to the selfish miner’s chain. This would result
in many cases where multiple blocks appear to be found at the same time.

Previously, Matt Springer attempted to detect selfish mining by using BlockChain.info’s API3.
Whenever Springer received data from BlockChain.info, he recorded that time as the time a
block was created. With the data, he was able to record the amount of time it took for the next
block to be found. Springer compared the proportion of blocks that were created 2 minutes or
less after the previous block to the amount that would be expected based on the exponential
distribution. His conclusion was that the observed proportion fell within a 95% confidence
interval, so there was no evidence of selfish mining. As far as I know, this is the only data based
approach to detecting selfish mining that has been conducted so far.

1 http://arxiv.org/pdf/1311.0243v5.pdf
2 http://hackingdistributed.com/2014/01/15/detecting-selfish-mining/
3 http://scienceblogs.com/builtonfacts/2014/01/11/is-bitcoin-currently-experiencing-a-selfish-miner-attack/

The method that I used to detect selfish mining is similar to Springer’s method, but I modified
several parts to be more accurate. First, I used BlockCypher as my source of data instead of
listening to BlockChain.info’s API. The advantage is that there is no additional delay while
waiting for BlockChain.info to send data to me after they receive a block. Another advantage is
that I can gather data about blocks retroactively instead of waiting to listen to new blocks. By
doing so, I was able to quickly gather data about blocks 375,000 through 385,000.

I used the BlockCypher API which contains a block overview method that returns an object that
contains a received_time field4. The received_time field contains the time that BlockCypher’s
servers received the block being requested. To find the time taken to find block i, I simply
subtracted the time block i-1 was received from the time block i was received. To analyze the
data, I chose to split up my data into sets of 1,000 blocks. The reasoning behind the split is that
a small set of blocks may not provide enough observations for a statistical test to come to a
conclusion. On the other hand, a selfish mining attack may not be attempted for the entire
duration of a set. If a set is too large that it captures a period where everyone is mining honestly
plus a period that includes selfish mining, the test may fail to find significant results. In the end,
the decision of 1,000 block sets is arbitrary.

Since Bitcoin mining is a poisson process, the time between two consecutive blocks will follow
an exponential distribution. Therefore, I used a goodness of fit test to measure the deviation
between the block times I observed and the expected distribution. In order to do this, I had to
divide the block arrival times into buckets. A rule of thumb for the goodness of fit test is to
ensure the expected number of occurrences in each bucket is at least 5. My choice was to
divide the arrival times into 20 buckets of 100 seconds with one bucket for blocks that took over
2,000 seconds.

An additional consideration I took into account is the propagation delay of blocks. On average,
recent blocks take about 10 seconds to reach 50% of nodes5, so I decided to use this number
as my propagation delay. The key point is that the time BlockCypher receives a block is about
10 seconds after the block has been created. Similarly, miners will have to wait until they
receive the next block before they can start working on it. Therefore, I decided to subtract 10
seconds from each observation to adjust for this.

Another factor I took into account was the changing hashrate of the Bitcoin network. The
average block time is targeted at 10 minutes, but changes in the hashrate will cause changes in
the block times. Instead of using a constant 10 minutes as my average, I used the average of all
the block arrival times as my parameter for the exponential distribution.

4 http://dev.blockcypher.com/#block
5 http://bitcoinstats.com/network/propagation/

The most significant result out of the 10 sets I tested is shown below. The most notable
difference is that the number of block times that fall in the 0-100 second bucket is less than what
the exponential distribution would predict. It seems that those observations have been shifted
into the 101-200 second bucket.

The p value for the test is 0.004. This would indicate that the deviation from the expected counts
is not caused by change. However, I conducted 10 tests and this was the one that stood out the
most. The chance that any test out of 10 would result in a p value of .004 or less by chance if
the distribution was actually exponential is about 4%. There is still a chance that the deviations
were caused by chance.

Even if the deviations were not caused by chance, the cause may not necessarily be selfish
mining. One of the indicators of selfish mining is an increase in orphaned blocks. However,
BlockChain.info reports no orphans being found during that time period6. In addition, one would
expect that more blocks would appear in the 0-100 second bucket, but the opposite was found.
Most likely, there is another reason for this deviation that is not selfish mining. In addition,
mining power in the Bitcoin network is fairly decentralized so that the effectiveness of a selfish
mining attack would be fairly low. In conclusion, the data shows that some sets of blocks have
generation times that do not follow the exponential distribution, but these differences are
probably not caused by selfish mining.

6 https://blockchain.info/orphaned-blocks

0
20
40
60
80

100
120
140
160
180
200

0-
10

0

10
1-

20
0

20
1-

30
0

30
1-

40
0

40
1-

50
0

50
1-

60
0

60
1-

70
0

70
1-

80
0

80
1-

90
0

90
1-

10
00

10
01

-1
10

0

11
01

-1
20

0

12
01

-1
30

0

13
01

-1
40

0

14
01

-1
50

0

15
01

-1
60

0

16
01

-1
70

0

17
01

-1
80

0

18
01

-1
90

0

19
01

-2
00

0

>2
00

0

Seconds after Last Block

Blocks 380,000-381,000

Observed

Expected

