Developing a DDCPCP ahg3de

Developing a Distributed Distributed Consensus
Protocol Consensus Protocol

Alec Grieser
ahg3de@Qvirginia.edu

December 12, 2015

1 Motivation

Many of the problems facing the future of Bitcoin today, including most notably the problem
of scaling Bitcoin as it sees increased adoption by the general public, must contend with an
equally vexing preliminary obstacle, which is that any significant change to the Bitcoin
protocol can result in unwanted forks in the block chain, which can undermine the currency
and lead to problems in the system. We have already seen some changes to protocol as it
is, but we can expect more changes in the future both from proactive decisions to change
the protocol to make improvements to it and also reactive decisions to plug bugs and fix
vulnerabilities. Therefore, it is important that even as the exact parameters of the Bitcoin
protocol change that there be consensus on what the latest version is and what the latest
version should be.

It is this problem that the research done here is attempting to address. We can
boil down the more abstract problem posed above—how do we maintain consensus on the
protocol being used—into a few different sub-problems:

e How is the protocol specified in a clear, unambiguous way?
e How do updates to the protocol get propagated through the network?

e How can interested parties—miners, full nodes, users, etc.—be certain that an update
has been accepted?

e How does the community decide to accept an update to the protocol?

In answering this, one response could involve a centralized party (for example, the
developers of the Bitcoin Core code) that makes all of the decisions regarding the future of
the currency. However, in the spirit of Bitcoin, it would seem more appropriate if we are to
find a distributed solution to this problem. As Bitcoin is perhaps the greatest distributed
consensus protocol ever deployed, in the end, what we really are searching for is a distributed
consensus protocol that determines the exact parameters of another distributed consensus

protocol.
1

https://github.com/bitcoin/bitcoin

Developing a DDCPCP ahg3de

2 Specification

Software specification is a non-trivial software engineering problem in no means peculiar to
Bitcoin. The specification for Bitcoin is currently a little dispersed, and nothing that I could
find was strictly official. There were a couple community attempts at creating documentation
for the protocol, such as the documentation offered at Bitcoin Wiki, a developer reference
on the Bitcoin.org website, and an open source GitHub project called Bitcoin-spec that is
putting together a comprehensive PDF specification written in LaTeX. Now, while these
may in fact suffice for a formal specification for this class, I want to propose here what may
be a better design decision for what Bitcoin appears to need today. Now, specification is
a difficult Software Engineering problem, and I don’t propose to have a general solution,
but I do have a proposal that I think would work for Bitcoin at least to the extent that is
necessary for this project. But before I go into my proposed solution, I would like to explain
a few properties that I believe that the specification should have if it is to be useful to the
community:

e Modular design - This specification, as much as possible should be broken into semi-
autonomous pieces that allow for proposals to be made that only affect one small part
of the protocol. For example, one should be able to easily make a proposal that only
affects the maximum block size without having to worry about the change affecting
(explicitly) the other parts of the protocol.

e Comprehensive - The entirety of the protocol should be included in this document
so that there are no hidden “unwritten rules” that underpin the system but aren’t
explicitly part of the protocol.

e Flexible - The format should be able to handle arbitrary changes to the protocol. This
is to guard against some fatal flaw/Achilles’ heel in the protocol from being baked in
due to the rigidity of the specification document itself.

e Unambiguous - There should be no difference of opinion as to what the underlying
protocol means and therefore what is necessary to produce a “correct” implementation.
The language of mathematics produces perhaps the clearest and least ambiguous way
of expressing certain notions that is known to humanity (except perhaps Lojban), and
it should be used as much as possible.

e Disseminable - Perhaps this is taken as a given in the digital age, but it should be
easy to publish and acquire the specification document, so it should be in some format
that is easy to send back and forth. Formally, any piece of information expressible as
binary bits can be sent between computers, but certain formats will lend themselves
more to widespread publishing than others.

e Verifiable - This property is more particular to Bitcoin and other distributed systems
than traditional systems in need of formal specifications, but there should be a mecha-
nism for nodes in the network to verify that a particular specification document is the
real one actually being used in the network rather than an ersatz imitation presented

by a malicious node.
2

https://en.bitcoin.it/wiki/Protocol_documentation
https://bitcoin.org/en/developer-reference
https://github.com/minium/Bitcoin-Spec

Developing a DDCPCP ahg3de

Now, if one examines the properties listed above, one thing that may pop out is that
two properties in particular—the requirements that the specification be flexible and that
it be unambiguous—seem a little contradictory, especially if the solution to the ambiguity
problem is mathematics, a “language” that is, if powerful, not nearly as expressive as natural
language, even if it does have the property that it can generally be agreed on what it means
by large segments of the population. I acknowledge that this tension does exist, which is
part of the reason why software engineering is hard, but there is a compromise to be had
between the two positions. In short, what is best written in mathematics can be written in
mathematics and what is best left to natural language can be written in natural language.
For example, if we wish to specify the maximum block size or a hashing requirement or a
schedule for mining rewards, we note that each of these are either numeric or determined by
mathematical formulae, so this may be best left to mathematics. However, if we wish to add
semantics or explanation to the protocol, spicing it up with natural language is probably the
best bet due to the difficulty that one might encounter when trying to convey that kind of
information through mathematical techniques.

2.1 Proposed format

With this in mind, I turn now to my proposed format. I will note that my way is not
the only technique that could meet all of the criteria outlined above, and there may be
other, competing sets of criteria under which my proposed format is unsatisfactory but other
formats may be more appropriate. But I do think that this format offers some advantages
that make it worth giving consideration. The format is thus: a JSON file can be used to
define all of the different components (objects, if you will) involved in the Bitcoin protocol
and describe their interaction. Fields in the objects can include, if appropriate, description
fields, which allow for the designer to add arbitrary English strings to explain more fully a
concept; size fields, which can specify how big (in bytes) a particular object can be; sub-
objects, such as, for transactions, the lists of transaction inputs and outputs as well as
associated elements like the locking and unlocking scripts, etc.; and more domain-specific
fields for things like script, which may want to add fields to specify the affect an instruction
will have on the stack or what arguments an instruction may take.

I will go into more detail as to how this format ticks the boxes outlined above, but I
first wanted to give some examples as to what the specification might look like to give the
reader a more intuitive feel for the proposal. With that in mind, here is what some snippets
of a final specification might look like:

{
"transaction": {

"description":
"one event transferring value from one set of outputs to another",

"fields": {

"inputs": {
"description": "list of incoming txn_inputs containing source of value",
"type": "list<txn_input>",

+,

"outputs": {

Developing a DDCPCP ahg3de

"description":

"list of outgoing txn_outputs containing destination of value",

"type": "list<txn_output>",
3,
"lock_time": {
"description": "block height or timestamp when transaction is fimnal",
"size": 4,
3,
},
"max_size": 100000,
3,
"txn_input" : {

"description":

"one input into a transaction taking value from another transaction',
"fields": {
"prev_tx_hash": {

"description": "hash of transaction containing the consuming output",
"type": "hash256",
"formula": "hash256(transaction)",
1,
"tx_out_index" : {
"description": "position of consuming transaction in source transaction",
"type": "uint32_t",
1,
"script_sig": {
"description": "unlocking script for appropriate transaction output",
"type": "script",
+,
3,
},
"txn_output": {
"description": "out output from a transaction storing transferred value",
"fields": {
"value": {
"description": "transferred value to output",
"type": "uint64_t",
3,
"script_pub_key": {
"description": "locking script of transaction output",
lltypell: "SCI‘ipt" ,
+,
3,

Developing a DDCPCP ahg3de

3,
"block": {
"description": "batch of transactions and metadata for the block chain",
"fields": {
"header": {
"description": "important metadata for this block",
"type": "block_header",
1,
"transactions": {
"description": "list of transactions included in this block",
"type": "list<transaction>",
1,
3,
"max_size": 1000000,
}’
"block_header": {
"description": "header of block information for creating the block chain",
"fields": {
"version": {
"description": "block version number",
"type": "uint32_t",
3,
"hash_prev_block": {
"description": "hash of previous block in the chain",
"type": "hash256",
"formula": "hash256(block_header)",
3,
"merkle_root": {
"description": "hash of Merkle tree root of included tramnsactions",
"type": "hash256",
3,
"nonce": {
"description": "arbitrary integer",
"type": "uint32_t",
3,
}’
3,
"script": {
"instructions": [
{
"word": "OP_DUP",
"description": "duplicate the top of the stack",
"opcode": 118,
"args": "",

Developing a DDCPCP ahg3de

lllnput II: IIXII s
"output": "x x"

},

{
"word": "OP_HASH160",
"description": "produce 160-bit hash of top of the stack",
"opcode": 170,
n args n s nn ,
lllnput ll: ”X” ,
"output": "RIPEMD-160(SHA-256(x))",

+,

{
llwordll: n II’
"description": "pushes data to stack equal in size to opcode",
"opcode": ">= 1 || <= 75",
n a.I.gsll: IIXII s
n 1npu-t n : nn s
”Output ll: IIXII s

},

1,

From above, we can see the basics of how this specification document may be struc-
tured. We can define objects by their fields, and for fields we can specify types varying from
standard C/C++ types (like uint32_t) or specific Bitcoin types that would have to also be
defined elsewhere (like hash256 for a 32-byte hash, probably double SHA-256 given that this
is Bitcoin). Special attributes like max_size can be used to determine the maximum size of
an object, so if one wanted to propose a change to the protocol increased, for example, the
maximum block size, all one would have to do is produce a new proposal that changes that
number (equal to 1,000,000 in the above sample mini-specification) to something larger or
even a formula. Likewise, if one wanted to update the hashing algorithm to, for example,
SHA-3 if SHA-256 gets broken, then one could produce a specification that simply changes
the hash algorithm used in the instructions for the OP_HASH256 instruction.

One final note about the example above: it doesn’t, at present, attempt to differenti-
ate between the different types of things that could be defined, e.g., larger units like blocks
or transactions, smaller types like uint32_t, or something more abstract like the script lan-
guage definition. In the final protocol specification, it may be useful to distinguish between
these different kinds of things, so I don’t claim that the specification above is necessarily in
its final form, but I do think it serves as a useful, non-trivial starting point for developing a
final specification for the entire protocol.

Developing a DDCPCP ahg3de

2.2

Fitness of solution

So, does the JSON format have the properties we wanted it to have when we began discussing
what would make a good specification system? Well, let’s consider them in turn:

Modular design - This was, in some sense, the most compelling reason for choos-
ing something like JSON. Essentially, specifications for different parts of the protocol
can be separated into different objects. Then changes can be made by changing the
appropriate object (and possibly fixing some changes to related objects that may be
necessary to handle ripples). But the exact parameters of the system are still fairly well
separated into different, independent sections of the document, which was the goal.

Comprehensive - No technical limitation should be able to stop the JSON document
from covering the entire protocol except maybe that one could argue that some meta-
knowledge of the system might be necessary to understand how the entire system fits
together. I grant that this could be somewhat difficult, but also by extending the
system to include more, including possibly a section where one just writes up how
these different parts fit together, one can contain even this meta-knowledge in the
specification itself.

Flexible - The JSON format can be extended to handle any situation by adding
additional JSON objects to the list and by creating new fields for existing ones as
needed. It may be helpful to have an additional section in the JSON specification
which puts some structure on the content of an object for clarity or comprehensiveness,
but these strictures would be part of the protocol rather than part of the technical
limitations of the JSON format.

Unambiguous - By encoding mathematics as a string, the JSON format can, if it
chooses to, incorporate completely unambiguous mathematical language, which is cer-
tainly a plus. There is also the possibility to include clarifying remarks through some-
thing like the description field on an object, which may, along with the formal math-
ematics, clear up ambiguity, but we do have to be careful with that, as one could just
as easily introduce ambiguity or contradictions through natural language.

Disseminable - Another particularly strong aspect of using JSON is that there is
already a fair amount of web infrastructure dedicated to do parsing, creating, and
transmitting JSON objects, with several internet APIs already making use of it, and
JSON handling functionality available in most popular languages either as a first party
citizen or in popular libraries. This should make the friction for figuring out how the
document will be sent out somewhat less than it otherwise would be.

Verifiable - I will go into this in more detail in the next section, but the idea is
that this ends up being just a text file that we then have to come to consensus over,
which means that there has to be a way for someone in possession of this file that
they have received themselves can determine that this is really the file that everyone
else is referring to. This is not a trivial requirement, but it is possible through some
standard cryptographic techniques (involving hashes) that I will discuss more in the
next session.

7

Developing a DDCPCP ahg3de

So the proposed solution does meet a fair number of the requirements that we have
set for it. The question is then how would we structure network communication so that we
can both change the contents of the document and maintain consensus on what the most
recent version of this document is. This will be the topic for the next section.

2.3 Sidebar: Using binary or source as the specification

One question that the reader may have is why we don’t just use the binary or source code
as the specification itself (and then we can use the hash of the code/binary in the following
sections). While this would work in the sense that if we could get everyone to agree to use a
particular version, then there would be some amount of consensus on what protocol would
be used, and then the following sections on updates to the protocol could be reduced to sub-
mitting and agreeing to patches to the code. And to a certain extent, this is essentially how
the Bitcoin network reaches consensus on its own protocol currently, with a large percentage
just agreeing to use the Bitcoin core code.

However such a system would have the following problems. First, if the code in
question is made to be platform-specific, then this will exclude anyone on other platforms
from joining the network, which may limit slightly limit the number of full nodes. Right now,
Linux remains a pretty popular solution for servers, and even those using OS X or Windows
servers can at least run a virtual machine containing Linux, but there is no guarantee that
this will be the case in the future, so it may be smart to “future-proof” the specification by
making it platform-agnostic.

Secondly, a specification system that uses the actual source or binary as the specifi-
cation would suffer from the deficit that the entire network would be committing itself to
a particular implementation of the underlying protocol, which means that if there is some
problem in the code that remains un-noticed until it starts to cause issues, then the whole
network will experience the problem at once. For example, if the Bitcoin core code fairs
poorly under high-traffic (because it doesn’t load balance well, for example) and begins to
drop transactions accidentally or crash, then if traffic increases on the network overall, the
entire system could begin dropping transactions and become disconnected or spotty. Fur-
thermore, if there is a security vulnerability in the core code, then an attacker who figures it
out could infect potentially all of the nodes. Depending on the severity of the vulnerability,
this may allow an attacker to double spend on the network successfully, gain an advan-
tage in mining blocks, deny service to certain individuals (effectively making their Bitcoin
value-less), or even bring down the entire network.

This would, of course, be unfortunate, so it should probably be the goal of the Bitcoin
community in general to have a few different clients, each of which has a significant share
of the nodes, to prevent this attack, though any attempt to do so would have to be careful
to make sure that all of the different versions could inter-operate and produced identical
inter-node messages. This isn’t an easy challenge, but it is probably better than having one
client monopolize all of the CPUs. If the code itself becomes the specification, then this is
impossible to manage, but it is possible with my proposed implementation-agnostic solution.

Developing a DDCPCP ahg3de

3 Maintaining Consensus

Essentially, we have no solved—or proposed a solution—for finding an object on which
consensus can meaningfully be created by trying to map the amorphous and abstract notion
of a protocol onto bits that can be passed back and forth. The next hurdle would then be
to figure out a way by which nodes may maintain agreement and notice when they have to
upgrade themselves because of a change to the protocol as well as be sure that an upgrade
is necessary. The problem of determining whether a change should be accepted or rejected
by the community will be tackled later, but for now assume that this is possible and all that
we want to ensure now is that the change will be propagated through the network.

When tackling this problem, I will consider several problems that together add up to
the larger problem that we are trying to solve. This includes (1) verification of the current
version used by the network by any node in a reliable way and (2) determination of a node
that it needs an upgrade. Once the node knows it needs to upgrade, it can then request one
from whatever vendor it got its original software, either automatically or manually depending
on how intricate a client may be. It would then be on the vendors to upgrade their software
to meet the new specification, which is not a trivial task, but it is, at its heart, divorced
from the one of setting the specification itself.

3.1 Network version determination

Once we have a specification document, there are several different places in the protocol that
one can embed information about this document in the network, Two places that are pretty
handy candidates are the version fields for both block headers and transactions. Each of
these are currently 4 bytes, so neither could contain full 256 bit hashes at the moment, but
one could embed checksums generated from the applying SHA-256 (or, in true Bitcoin spirit,
double SHA-256) to the specification file in these fields as something like the last 2 bytes,
for example. In the future, one could imagine adding an additional field to the block header
or transaction format that allows for full hashes of the specification to be held in addition
to the version field (or in lieu of it even), but that would be a fairly significant change that
probably isn’t worth pursuing right now.

Now, a checksum would not be enough to strongly guarantee security if it were used
alone. There are only 4.29 billion integers that are expressible with only 32 bits, so even if
all 4 bytes of the version number are used to encode the checksum, a potential attacker could
probably brute force a collision in a reasonable amount of time and attempt to convince you
that the protocol is something other than the actual one used by the rest of the network.
However, the checksum only has to signify that something has changed in the protocol rather
than expressing the change itself, so even if we limit the number of bits used in the version
parameter to 16, there is still only a 1 out of 65,536 chance that two particular protocol
hashes will share the same checksum value, though one should be mindful of the birthday
paradox that would expect to find a collision half of the time even if there are only (roughly)
256 different checksums created. This isn’t the best, but it will probably suffice until the
protocol is updated to use a larger spot for the protocol hash if all it has to do is signal to
nodes who join the network midstream that something has changed.

What will really be used to guarantee version accuracy is that the full specification

9

Developing a DDCPCP ahg3de

hash has to be included in the blockchain for it to be valid, and the value of this hash can’t
be changed by would be attackers (without a large amount of computing power). The exact
way that this hash is included in the blockchain will be specified later, but for now, it is
enough to know that it exists and that there is a particular transaction (in a particular
block) where the node can look. If the node receives bogus data from a would-be malefactor,
it can request this node for the transaction where the new specification has been included.
If it doesn’t get a response from this node (or others in the network), it can be sure that the
specification is false and there is no need to upgrade.

3.2 Node Upgrades

The final piece of this puzzle is then the mechanism by which the node verifies the version
of the software that it itself is currently using. For this, there are two basic options: (1)
clients, including light-weight clients, can include the specification document itself, or (2)
they can include only the specification hash. Hopefully, full nodes at the least would include
the full document, as possession of this document will allow the node owner to investigate
the contents of the document, which will be helpful in the next section on how the network
protocol is to be changed, but all that is strictly necessary to verify that the current client
is on the latest version is the hash of the specification, which I suspect would be the method
most Bitcoin light clients would use given that it is significantly less data to have to store
locally.
So the order of events would thus be this:

1. A node wakes up after being dormant and missing information.

2. Tt updates its own information and notices that blocks/transactions are running an
unrecognized version.

3. The node then requests for the latest version data from its neighbors including a full

hash in the blockchain.

4. The node then knows to request an update from its software vendor for a newer version
of the client that can handle the new protocol.

As a final note, I should remark that none of this solves the problem of verifying that
the software one receives does what is advertised, and it would be trivial for a mischievous
attacker to write some malware into a Bitcoin client. The attacker, if they then also followed
the rules about including the specification hash or document, would remain undetected just
as before. Verifying that software is correct and virus-free is a hard security problem that
I am not proposing to solve. All that my solution claims to do is to provide a way for an
honest node to monitor the system and determine whether their software nominally meets
the specification that the network is currently working with.

4 Changing the Protocol

While the preceding ideas are perhaps interesting or at least useful from a pure software
engineering point of view and and perhaps useful if one were to design a system where power
10

Developing a DDCPCP ahg3de

and decisions were made at the top by a controlling few, they don’t even attempt to answer
the question as to how one might go about getting the network to agree to changes in a
publicly-accessible way. This is the subject for the rest of the proposal, and it will involve
creating a way for the users of the system within the network to express preference as to
how the protocol should change and evolve.

The heart of the proposal is this: the users of the system should be the ones who
have ultimate control over the direction of Bitcoin itself. Ultimately, it is the users who will
determine if Bitcoin lives or dies anyway, as if the cryptocurrency fails to meet their needs,
they can always move on to a different system which better suits them. If we wish to get
the user’s opinions, we could do so in a couple of different ways. For one, we may want to
try and give one vote to every user and have votes tallied on new changes by nodes in the
network. But then we have the problem of figuring out how many people there are and how
many control multiple address, etc., not necessarily an impossible task with Bitcoin, but
an error-prone one usually at best. One could imagine requiring some kind of either secret
but centralized system or distributed but open method of identification proving identity, but
this introduces serious concerns involving either centralization (and trust) or a risk at losing
anonymity, a key feature (rightly or wrongly) for many users.

So rather than adding to the system some separate test for identity, it would perhaps
be preferable if we could instead find some already limited but fairly widely distributed
quantity within the Bitcoin ecosystem to substitute as a form of quasi-identity. Now, there
are only a few different candidates, as many elements of the Bitcoin system are designed
to be numerous rather than limited. For example, one can create an unlimited number
of public addresses, or create an unlimited number of transactions, so neither addresses nor
transactions can be used for this purpose. There are a limited number of blocks, in that there
is only about 1 created every 10 minutes, but using blocks as votes has its own problems. For
one, there are only a handful of mining pools, so if those pools either colluded together or
simply naturally arose on agreement on certain issues, they could easily override the wishes
of the general populace. More generally, the number of miners within the Bitcoin system will
tend towards a vast minority of the users as it becomes more popular and mining becomes
more specialized. So if we wish to make sure that majority of the community has a say, then
it probably won’t work.

The next logical element of the system to attempt to use would then be Bitcoin itself,
with one vote given for each bitcoin (or, equivalently, for each satoshi). There are several
advantages and disadvantages to such a system, but the basic advantage to be gained is
that there can only be a finite number of them in the world at any given time, they have
intrinsic value and are thus hard to acquire if one wants to spam the system, and possession
of bitcoin, in some sense, proves that one has stake in the system and can be viewed as kind
of analogous to stocks in a corporation. In corporate settings, it is usually expected that
one will get one vote for each share, so it shouldn’t surprise us if one bitcoin is one vote in
this system. I therefore propose a system where one can publicly declare that one is setting
aside a certain amount of bitcoin (agreeing not to spend it during the voting procedure) and
along with that, publicly broadcast a vote for a new protocol.

So, if there is a way to use Bitcoin to vote, we will try and use that. Then the system
has to solve a few problems:

11

Developing a DDCPCP ahg3de

How does one propose changes and thus call for a vote?

How exactly are these votes recorded on the blockchain?
e What is needed to “win” a vote?

How do we determine that a vote has ended?

How are the results from the vote reported?

I will attempt to address all of these questions in the forthcoming sections, but I will
not address these strictly in order. The most technically interesting question involves the
problem of recording the vote in the blockchain. I will thus address this first, which will also
be useful in determining the way votes will be proposed in the blockchain. The rest of the
protocol ends up being more about constructing a workable “constitution”-type structure
rather than solving technical problems and will thus be handled last. Finally, I will go over
some potential problems with this system and attempt to provide useful analysis on the
system as a whole.

4.1 Casting one vote

The essential strategy used here is to have a two-phase voting procedure, the first phase of
which will feature publishing a commitment to the blockchain so that everyone can vote in
secret. Then there will be a second phase where the commitment pre-images are revealed so
that the votes can be counted from the public ledger.

So, where should this information go? Well, there isn’t actually that much space for
the information to go within a transaction, as almost all of it is set by the protocol, and
proposals to use the blockchain to do things like pass messages (for example, the Ombuds
project) have to essentially hack around these inherent limitations in the protocol to pass
along interesting information.

One potential place for this that I propose would be the locking and unlocking scripts.
I propose this for two different reasons. First, these scripts can be greatly extended, at least in
theory, so there is room here to add the new data. But secondly, by placing this information
here, we can enforce through technical means requirements such as that, in order to make the
vote meaningful, the bitcoin used as part of the vote can’t be spent until after the election
concludes and the votes are revealed.

So, what should the locking script look like? Well, as a preliminary proposal, one
script that looks promising might be a type of locking script known as a transaction puzzle.
(See Bitcoin Wiki.) In general with transaction puzzles, the approach is to publish a hash to
the blockchain and require that someone produce the pre-image of this hash to unlock the
given transaction output. In our case, we will want to publish a hash that commits a vote
to the chain so that one has to reveal the vote in order to get back the original coin. With
that in mind, here is how such a locking script might look:

OP_HASH256

OP_DATA SHA-256(SHA-256(vote_id || specification_hash || nonce))
OP_EQUAL

12

https://en.bitcoin.it/wiki/Script#Transaction_puzzle

Developing a DDCPCP ahg3de

Above, the second line of the script is what contains the commitment itself. There
are three parts that I have identified as useful to have: (1) the vote_id is an ID to group of
all of the votes cast in the same election together to help with counting votes after the reveal,
and it is published to the blockchain by the person who initially called for a vote; (2) the
specification_hash is the hash (let’s say double SHA-256) of new protocol specification
that this vote is supporting; and (3) a random nonce, 32 bytes in length, serving as a way
for the person casting their vote to make finding the pre-image non-trivial. Note that we are
taking double SHA-256 of the vote to create the commitment—I don’t claim that there is
any technical reason why one should do this, but the OP_HASH256 opcode in script performs
double SHA, so it’s easier to go with the grain and use this as the hash rather than using
single SHA, for example.

Now, once this transaction is created, it should be clear that one would need to
publish a transaction where the unlocking script is the following to get back the value set
aside as the vote for the duration of the election:

OP_DATA vote_id || specification_hash || nonce

This reveals the vote, which means once everyone publishes their commitment pre-
images, all of the votes can be tallied and a winner declared. Furthermore, this unlocking
script has the property that one has to know the nonce for it to be successful, which means
that it is (we think) very computationally difficult for any attacker to determine the vote
and unlock the transaction pre-maturely. These are all great properties, and it looks like
this script has real potential.

However, there is one fatal flaw to this locking-/unlocking-script pair. In the trans-
action where one reveals the pre-image, one probably will want to reassign the coin used
during the vote back to the original owner. But the transaction unlocking script contains
no signature, so once the pre-image is revealed, all secret information needed to make a
valid transaction spending the coin has been leaked, so a would-be attacker can create a
new transaction sending the bitcoin to them rather than the real owner. (This would look
identical to a double-spend attack on the network, and the attacker is guaranteed to be able
to get their transaction included in blocks faster, but neither is the real owner—and the
attacker may be willing to pay higher fees.)

To overcome this, I propose the following modification: combine the above transaction
puzzle script with the standard Pay-to-Pubkey-Hash script. Here is what that would look
like:

OP_HASH256

OP_DATA SHA-256(SHA-256(vote_id || specification_hash || nonce))
OP_EQUALVERIFY

OP_DUP

OP_HASH160

OP_DATA pubkey_hash (public_address)

OP_EQUALVERIFY
OP_CHECKSIG

As one can see, the first three lines of this new locking script are exactly the locking
script earlier proposed, and the remaining lines are exactly the Pay-to-Pubkey-Hash script
that is currently the most commonly used Bitcoin locking script. Then the appropriate

unlocking script would be the following:
13

Developing a DDCPCP ahg3de

OP_DATA signature
OP_DATA pubkey
OP_DATA vote_id || specification_hash || nonce

Then just as before, the vote is revealed publicly to be tallied, but this time, an
attacker would have to be able to generate a valid signature for another transaction if they
wanted to redirect this new transaction somewhere else. I would also add that this system
means that while secrecy of the underlying vote during the first phase is something that this
system would allow, the presence of additional hurdles locking a transaction means that it is
not strictly necessary, so anyone who votes is free to publish their nonce and their preference,
and then everyone can verify that they are telling the truth. This may not actually be a
positive (there are some benefits to a completely secret election in that it is harder for the
election to be biased by early votes in one way), but it is an interesting feature of this system.

4.2 Proposing a change

Now that we have a mechanism for creating a transaction that has with it some information
(in the above discussion, a vote commitment and then pre-image reveal), we can modify
these scripts to include signal to the network that a vote is being called where a specific new
protocol is being proposed. Our basic strategy in this will essentially be to modify the script
by removing the hashing component so that the information being passed can be read both
when the locking script and when the unlocking script are published to the blockchain.

So, here is what the locking and unlocking scripts would look like. Note that the
person proposing the change gets to choose the vote_id value, and it is this value that all
valid nodes in the network wishing to vote will have to concatenate with the specification
hash and nonce. The only requirement is that this number be unique for each election so
that votes can be easily separated and tallied. Also, the specification hash here is the
hash of whatever the new protocol specification will be should the network agree to it, which
will also be decided by the person proposing the vote. The final parameter, vote_type, I will
go into more detail later, but it will determine how long the voting period will be, when the
voting starts, how many people are necessary to participate, and what exactly is required
for the new proposal to succeed.

So, this leads naturally to the following locking script:

OP_DATA vote_id || specification_hash || vote_type
OP_EQUALVERIFY

OP_DUP

OP_HASH160

OP_DATA pubkey_hash (public_address)

OP_EQUALVERIFY
OP_CHECKSIG

Note that the actual specification document is not included in the information pub-
lished, with the idea being that it is on the proposer to send out through other means (such
as standard message passing, online fora and discussion boards, carrier pigeon, etc.), but this
way, anyone who receives a supposed specification document can verify that the document
is actually what is being proposed by comparing its hash to the one that has been published
in the blockchain.

14

Developing a DDCPCP ahg3de

Now, we have most of the technical elements laid out for working proposing new
specifications and for voting on them on the block chain, but it still remains to be seen how
we can fit those together to form a coherent system. To do this, there need to be a set of
rules put in place to determine what exactly is needed to call for a vote for a new proposal,
and once a vote is called, what exactly is needed to determine if it has been accepted or not,
including the time for elections, the minimum participation rate, and the total margin of
victory required.

When voting was discussed, there was no minimum amount (except perhaps the
global minimum for the amount of value that has to be placed in a transaction) placed
in a single vote needed for it to count, and this isn’t necessarily the best decision (if one
wanted to prevent spammers, for example), but it does however also make some modicum
of sense not to attempt to limit the franchise to only those with a certain level of wealth
if we wish to keep as many people eligible to vote as possible (and therefore less likely to
become effectively centralized). However, when it comes to proposing new specifications for
the Bitcoin protocol, due to the effect that a proposal can have on the system with more
transactions being added to vote and nodes being forced to tabulate winners, along with the
general desire to make changes fairly rare in order to keep the currency and protocol stable,
there is a strong incentive to limit the number of proposals to change the system that get a
vote.

For this reason, it should be the case that there is some minimum amount that can
be in a proposal transaction if it is to be the case that these are relatively rare. An effective
limit may be something like 100 BTC, a significant amount that one wouldn’t put on the
line lightly, but is also not an impossible quantity to raise. Furthermore, there is no reason
why these 100 BTC have to be used in a single transaction to call for a vote. One could
imagine splitting this burden across multiple in order to crowd-fund a new proposal, which
might help democratize the system.

When it comes to election timing and victory margin, I propose that there should be
at least two different tracks under which changes can be made based on the urgency of a
proposal. The main difference would be time given for an election and the margin of victory
required. For a standard vote, I propose that there should probably be about a week (1008
blocks) between a vote being called for and the first stage of the vote being called. Then there
should be about a week (again, 1008 blocks) for interested nodes to produce the transactions
containing commitments. Then, after that, there should be another week for nodes to
publish transactions revealing their votes. Following that, a winner can be declared. For the
new specification to prevail, it seems fair to require that there is a minimum participation
rate expressed in terms of the total amount of bitcoin used in the vote. The exact best
numbers for this would require more thought, but something expressed either in terms of
some percentage of the total number of bitcoin available—something like 1%—or in absolute
terms like 100,000 BTC should work. This requirement shows that there is some agreement
of those in the network that this is an idea that has been given thought and consideration
by the community. Furthermore, a super-majority of the votes in the range of 60% should
be necessary to change the protocol in order to encourage stability in the face of a close
vote. Alternatively, one could combine these into a single requirement that in order for a
new proposal to be adopted, it should have the backing of a super-majority of those who
vote as well as votes totaling at least some target amount (e.g., 100,000 BTC or 1% of all

15

Developing a DDCPCP ahg3de

bitcoin that have been created).

The second track would then be reserved for emergencies—situations such as what
happened with the OP_RETURN bug where a failure to correct the protocol could result in
serious problems for the network. In this situation, the turn around time for votes would
be much shorter—something like a day rather than a week—but the decrease in time is
exchanged for an increase in votes. In this case, one would require something like 90% of all
votes cast to support the change, as would be the case for security updates. This aims to
address problems of the whole process being too rigid for certain kinds of updates while the
standard voting procedure aims to remain fairly rigid to avoid having changes made to the
system too often.

Each of these types of votes can be given a code within the protocol specification that
is published along with the vote_id and specification hash parameters. The network
would then use this to determine which of the above voting procedures exactly is being used
with any particular proposal. In any case, following the end of the election, there should be
a block mined in one of the blocks following the end of the voting that announces the winner
for the network to verify within the Coinbase parameter. This is the way in which there
can be a publicly visible way that nodes in the network can later use to verify the current
protocol version.

As a final remark in this system, one might note that this whole procedure is rather
involved and has a few different moments when we could imagine tweaking the system or
perhaps a place where a design bug would need to be fixed. To handle this, we could
create a distributed distributed distributed consensus protocol consensus protocol consensus
protocol to make sure consensus is reached by the network on what the exact parameters
of the distributed distributed consensus protocol consensus protocol is...but that seems a
bit much and leads to problems of infinite regression. (“It’s consensus protocols all the
way down.”) To get around this, we can actually include the specification for this part of
the protocol within our general specification document in addition to specifications of the
elements of the protocol that are already in use. Then changing our voting structure can be
done using the same infrastructure for changing the Bitcoin protocol proper. Then one runs
into issues of meta-changes where one might imagine certain groups of users attempting to
gain an advantage by bending the rules not only of the system but also of the rules that are
then used to change the rules to make the system. But the alternative is either a proscribed
set of rules that never change or an infinite sequence of protocols designed to keep lesser
protocols in line, so given this backdrop, including the protocol-changing part of the protocol
within the protocol specification itself seems like the least of all of the evils.

This completes a description of the newly proposed voting system that can be used
to change the protocol in a decentralized way that can then be verified by any node in the
network and thus allow for automatic updates that may not have been possible in the current
system. I have attempted to summarize some of the advantages of this system so far, but
there are several possible sources for problems that are certainly worth addressing. Before
concluding, I will touch on these to give a more complete view of the proposal.

16

Developing a DDCPCP ahg3de

4.3 What could go wrong?

One major concern that may occur to the reader is whether the miners would go along with
such a proposal and whether miners would agree to include transactions they disagree with
within a block. To this, I would respond that miner participation is a major concern, as
they are the ones who ultimately control the currency, in some respect. There is, however,
also a feeling among some that the miners are primarily interested in decisions being made
that further the network’s health and continuation, and are often agnostic as to the exact
solution (at least according to the founders of Ombuds).

But even if miners care and actively attempt to subvert the system by not including
the votes they don’t like, this still might not be as big a problem as may be supposed. Part
of the impetus for including a week between voting rounds in the standard voting procedure
is to allow for there to be a large number of opportunities for even small miners to get a block
or two in within the pertinent period. This way even if a minority of miners disagree with a
change, hopefully at one player will and can be counted on to include the transactions that
the other miners are neglecting. Now, if the miners universally agree that a change to the
protocol would be detrimental, then there would be little recourse for those who go against
the miners, as their votes would never be included by anyone. But perhaps if none of the
miners agree to a change, perhaps it shouldn’t be added to the protocol given that this could
encourage miners to leave the network or discourage new miners from coming online, so this
may not be the worst feature of this system. If one likes, one could think of this as a natural
check on the system by which miners are given a little more say on the way the election goes
than an average user, but this matches their additional importance over average users.

A more serious problem with this system may lie in the one-bitcoin, one-vote policy
that underpins the system. On the one hand, as has already been stated, this policy makes
a modicum of sense if we think of Bitcoin as a corporate endeavor and owners of the coin
as stock holders, and the Bitcoin does serve as a kind of “proof of stake” in the system and
does stop spammers from joining the system. But we have to be careful here, as the natural
consequence then becomes that the wealthy become de facto more powerful than others.
While this has interesting social consequences in and of itself, it also has direct consequences
when it comes to the degree to which this protocol remains decentralized as opposed towards
tending towards centralization. For various reasons, capital is naturally conglomerative in
that those with money can invest in the kinds of ventures that will allow for them to acquire
more capital. So, in that sense, we may expect money to concentrate itself in the hands of
a few. If power is then correlated with money, there is then an additional problem to the
usual ones that worry those who are concerned about wealth inequality in that now votes
and influence would also be concentrated in the few.

But on the other hand, there is one check that the general populace has that hasn’t
existed with many currency systems in the past. Namely, the ad hoc nature of Bitcoin
and the lack of backing from any particular state means that at any time, the users can
switch to another cryptocurrency or back to traditional, government-issued currency. While
this transition wouldn’t be costless, it would be considerably less expensive than a lot of
currency transitions in the past and possible in ways that it just hasn’t been possible in the
past. And the exodus of users from the currency shouldn’t be considered an element of first
resort against centralization if those with power begin to bend the rules in self-interested

17

Developing a DDCPCP ahg3de

ways, but it should serve as a compelling reason for those with a stake in the system to
make decisions that benefit the community as a whole rather than as simply optimizing the
currency for themselves.

5 Conclusion

Ultimately, some solution to the problems of software upgradeability and protocol consensus
will have to be reached by the Bitcoin network if it is to have any sort of longevity into the
future. The needs of future users cannot possibly be expected to match up perfectly with
those of the users today, and we will want a way to fix the problems with the system that are
opaque to us now but become more obvious with age. To do this in a way that does not fork
the blockchain and fracture the system so it becomes unworkable will be difficult, and I have
proposed my solution. If adopted, it would put the future of the system in the hands of those
who use it, for better or for worse, rather than in the hands of the few core developers who
currently set what is in the core code and what gets excluded. This philosophy is ultimately
more consistent with the founding principles of the Bitcoin project than current proposals
being thrown around so far and hopefully would successfully make the protocol resilient to
the needs of future users as well as the present. But maintaining a currency is hard and the
future unsure, and ultimately, only time will tell as to whether a system built like Bitcoin
to run in such a decentralized way can survive or whether it will be unable to keep itself
consistent and run aground without a centralized source of power leading the way.

18

	Motivation
	Specification
	Proposed format
	Fitness of solution
	Sidebar: Using binary or source as the specification

	Maintaining Consensus
	Network version determination
	Node Upgrades

	Changing the Protocol
	Casting one vote
	Proposing a change
	What could go wrong?

	Conclusion

