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Introduct ion 

The use of credit cards today is an act of faith on the p a t  of all concerned. Each party 
is vulnerable to  fraud by the others, and the cardholder in particular has no protection 
against surveillance. 

Paper cash is considered to  have a significant advantage over credit cards with 
respect to  privacy, although the serial numbers on cash make it traceable in principle. 
Chaum has introduced unconditionally untraceable electronic money( [C85] and [C88]). 
But what is to  prevent anyone from making several copies of an electronic coin and 
using them at different shops? On-line clearing is one possible solution though a rather 
expensive one. Paper banknotes don't present this problem, since making exact copies 
of them is thought to be infeasible. Nor do credit cards, because their unique identity 
lets the bank take legal action to regain overdrawn balances, and the bank can add 
cards to a blacklist. 

Generating an electronic cash should be difficult for anyone, unless it is done in 
cooperation with the bank. The RSA digital signature scheme can be used to realize 
untraceable electronic money as proposed in [C85 and C88]. This money might be 
of the form ( ~ , f ( z > ' / ~  (mod n)) where n is some composite whose factorization is 
known only to the bank and f is a suitable one-way function. The protocol for issuing 
and spending such money can be summarized as follows: 

1. Alice chooses arandom z and T ,  and supplies the bank with B = y3f(z) (mod n)). 
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2. The bank returns the third root of B modulo n: r . f(2)ll3 (mod n) and with- 

draws one dollar from her account. 
3. Alice extracts C = f ( ~ ) l / ~  mod n from B .  
4. To pay Bob one dollar, Alice gives him the pair ( z , ~ ( z ) ' / ~  

5. Bob immediately calls the bank, verifying that this electronic coin has not already 

(mod n)). 

been deposited. 

Everyone can easily verify that the coin has the right structure and has been signed by 
the bank, yet the bank cannot link this specific coin to Alice's account. 

Among other advantages, the new approach presented here removes the require- 
ment that the shopkeeper must contact the bank during every transaction. If Alice 
uses a coin only once, her privacy is protected unconditionally. But if Alice reuses a 

coin, the bank can trace it to her account and can prove that she has used i t  twice. 

Our work is motivated by that on minimum disclosure ([CSS], [BCSSa], [BC86b] 
and [BCC]) and on zero-knowledge ([GMR], [GMWSSa] and [GMW86b]). Our scheme 
protects Alice's privacy unconditionally as is possible with the former, rather than 
computationally as in the latter. Using these very general results - which seem to be 
infeasible in practice - the security of the protocols presented here could be reduced to, 
say factoring (or any onw-way permutation if Alice's privacy is only computationally 
secure). Instead, We use the cut-and-choose methodology (first introduced in [R77]) 
directly, yielding quite practical constructions. 

The next section presents our basic scheme, which guarantees untraceability, yet 
allows the bank to trace a "repeat spender". We then show how to modify the protocol 
so that the bank can supply incontestable proof that Alice has reused her money. 
Finally, we give a more efficient variant and briefly discuss further work. 

1. Untraceable Coins 

The bank initially publishes an RSA modulus n whose factorization is kept se- 
cret and for which 9(n)  has no small odd factors. The bank also sets some security 
parameter k. 

Let f and g be  two-argument collision-free functions; that is, for any particular 
such function, it is infeasible to  find two inputs that map to the same point. We 
require that f be "similar to  a random oracle". For unconditional untraceability we 
also require g to  have the property that fixing the first argument gives a one-to-one (or 
c to 1) map from the second argument onto the range. 

Alice has a bank account numbered u and the bank keeps a counter v associated 
with it. Let @ denote bitwise exclusive or and 11 denote concatenation. 

To get an electronic coin, Alice conducts the following protocol with the bank: 



1. 

2.  
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Alice chooses a;,  c;, di and ri ,  1 5 i 5 k,  independently and uniformly at  random 
from the residues (mod n). 
Alice forms and sends to  the bank k blinded candidates (called B for mnemonic 
purposes) 

B i = r i 3 . f ( Z i , Y i ) m o d n  for I < i < k ,  

where 

zi = g(a;,c;) y;  = g(ai 63 (.II(v f ad;). 
The bank chooses a random subset of k / 2  blinded candidate indices R = {ij}, 
1 5 ij 5 k for 1 5 j 5 k / 2  and transmits it to Alice. 
Alice displays the  ri, ai,  c; and d ;  values for all a in R, and the bank checks them. 
Note that ull(w + i )  is known to the bank. To simplify notation we will assume 
that R = { k / 2  + 1, k / 2  + 2,. , . ,k}. 
The bank gives Alice 

n B:I3 = n B!l3 mod n 
i $ R  1 5 i < k / 2  

and charges her account one dollar. The bank also increments Alice’s counter v 

by k .  
6. Alice can then easily extract the electronic coin 

C = n ! ( x i ,  y i ) ’ j 3  mod n. 
1 < i < k / 2  

Alice reindexes the candidates in C to be lexicographic on their representation: 

f ( z 1 , ~ )  < f ( z z , y z )  < .-. < f ( Z k / 2 , Y k / 2 ) .  Alice also increments her copy of the 
counter v by k. 

Note: For any fixed E ,  if fewer than (1 - 6) of the k blinded candidates Bi’s have the 
proper form ( r3f (g(a i ,  c ; ) , g (a i  @(ul l (v+i ) ) ,d ; ) ) ) ,  then Alice is caught with probability 
1 - exp(-crk) for some constant c. 

TO pay Bob one dollar, Alice and Bob proceed as follows: 
1. Alice sends C to Bob. 
2.  Bob chooses a random binary string tl, 2 2 , .  . . , Q / 2 .  

3. Alice responds as follows, for all 1 2 i 5 k/2: 
a. If 2i = 1, then Alice sends Bob a; ,  c; and y i .  

b. If = 0, then Alice sends Bob z;, ai @ ( u I I ( u  t i)) and di .  
4. Bob verifies that  C is of the proper form and that Alice’s responses fit C. 
5. Bob later sends C and Alice’s responses to  the bank, which verifies their correctness 

and credits his account. 



322 

and 
The bank must store C, the binary string 21,. . . , zk and the values a; (for zi = 1) 
u; @ (uIIv) (for zi = 0). 
If Alice uses the same coin C twice, then she has a high probability of being traced: 

with high probability, two different shopkeepers will send complementary binary values 
for at  least one bit t i  for which Bi was of the proper form. The bank can easily search 
its records to ensure that C has not been used before. If Alice uses C twice, then, with 
high probability, the bank has both ui and u i @ ( u I I ( v + i ) )  with high probability. Thus, 
the bank can isolate u and trace the payment to  Alice's account. 

A possible problem with this scheme is a collusion between Alice and a second 
shopkeeper Charlie. After the transaction with Bob, Alice describes the transaction 
to Charlie, and both Bob and Charlie send the bank the same information; the bank 
knows that with very high probability one of them is lying, but has no way of telling 
which one, and cannot trace the coin to Alice's account 

By fixing Bob's challenge to Alice, however, such a coalition can be kept from 

defrauding the bank. Every shopkeeper has a fixed query string, and every two strings 
have Hamming distance at  least ck for some constant c. To prevent Alice from reusing 
the same coin at the same shop part of the challenge should still be random, or the 
shopkeeper should maintain his own list. 

The scheme we describe above requires Alice to hold several coin denominations 
and use them to  pay the exact amount. Section 3 presents a more efficient way to 
handle exact amounts. 

2. Proving Multiple Spending 

The scheme we describe above has the unfortunate property that the bank can frame 
Alice as a multiple spender. This means that these schemes cannot have any legal 
significance. To prevent a frame-up we assume that Alice has a digital signature scheme 
and a certified copy of her public key. Because we use digital signatures, Alice is 
protected against frame-up only computationally, not unconditionally. Yet, Alice's 
privacy remains unconditionally protected. 

Rather than use the same account number u for a l l  coins given to Alice, u will 
vary from coin to coin and from one blinded candidate to the next, We describe only 

the modifications to  the basic scheme of section one. 

Alice chooses two random integers z! and 2:' for every i; ui could then be chosen 
of the form uAlice's Account Number" 11 z' 1 1  2'. Along with the blinded candidates ( 
the Bi values) Alice supplies the bank with a digital signature on 
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During the cut-and-choose, the bank verifies that each of the k/2 Bi’s it exam- 

ines generate an appropriate uj. The bank has legal proof that Alice reused the coin 
whenever it can present the preimage of at least k/2 f 1 of the g(zf, zr). 

Of course Alice has no hope if the bank can break the signature scheme she has 
chosen. Assuming the bank cannot forge her signature, then even if the bank can break 
g, its bijective property mentioned earlier ensures, with high probability, that she can 
prove g was broken by showing her (z i ,z:)  for any broken g(zI,$). This is a proof, 
since the assumption is that only the bank and not Alice can break g. 

3. Untraceable Checks 

The following scheme emulates the concept of guaranteed checks (similar t o  that of 
EuroChecks), but ensures untraceability. Alice requests a set of checks, whereby she 
can use each check for any single amount up to its limit and can later request a refund 
for the difference (Limit minus actual sum). The bank will not know where the money 
was spent, nor the individual transaction amounts. 

Alice can generate several checks in one interaction with the bank. The checks are 
similar to the basic version described in section one, but the first j factors are used 
to encode the purchase sum and the next k - j factors are used to prevent Alice from 
using any check more than once. 

The bank publishes two different RSA moduli, n and n’, which are used for two 
different kinds of digital signature. 

Alice’s u can be used either as in section one or in section two. As before, let v be 
Alice’s personal counter. 

Alice sends the bank t pairs of major and minor candidates. For every major 
candidate Alice chooses b, c, d,  and a at random; a major candidate Mi is of the form 
f (z ,y )  where 2 = g(al lb ,c)  and y = g(a @ (.[I(. + i ) ) , d )  . Each minor candidate is of 
the form g ( b ,  e) where e is chosen at  random. Alice generates several major candidates 
M I ,  Mz,  . . . , Mt and their related minor candidates ml, m2, .  . . , mt. 

Alice blinds the major and minor terms before submitting them to the bank. 
Blinded major candidates are of the form B(Mi)  = r3k &I, mod n, where T is chosen 
at random; blinded minor candidates are of the form B(mi )  = T~~ . mi mod n’. If the 
bank provides some 3’th root of a blinded major(minor) term, i 5 k, then, as before, 
Alice can extract the appropriate root of the major(minor) term itself. 

Alice sends the blinded Mi’s and mi’s to the bank. Much as in section two, the 
bank performs a cut-and-choose operation, verifying that 112 of the pairs have the 
proper form. Then the bank performs a random permutation of the rest, group- 
ing them into ordered sets of size k. Let one such set be denoted for simplicity 
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B ( M 1 ) , B ( M 2 ) , .  . . , B ( M k ) .  The bank extracts the following roots: 

Fi = B ( ~ w i ) ' / ~ '  (mod T Z )  for 1 5 i 5 k, 

Di = B(mi)1/3' (mod n') for 1 5 i 5 j .  

The bank now returns the product of the k roots of blinded major candidates 
(nF=, Fi); the appropriate roots of the j blinded minor candidates are returned indi- 
vidually. Alice extracts the check 

and E l ,  E2,. . . , E j ,  where E; = mt/3' .  
The bank now increments Alice's counter v by t ,  Alice does likewise to her local 

COPY. 

To make a purchase with such a check Alice encodes the purchase sum by regarding 
the first j of the Mi locations as denominations 1 ,2 , .  . . ' 2 j - I .  If the ith denomination 
is a term in the purchase sum, then Alice reveals to the shopkeeper the appropriate y; 
and the preimages of the 2;; if the i th  denomination is not a term in the purchase sum, 

then Alice reveals z i  and y;. Thus, later presenting E, and the internal structure of 
the matching mi term to the bank for a refund is safe exactly when the denomination 
is not spent. 
Note: Given a root of the form z1I3', it is trivial to compute roots of the form for 
j 5 i .  Thus, Alice could use the denomination 2J, not use the denomination 2', j < a, 

and present the bank with the value 

daiming that this is a signed minor term for an unused 23 denomination. The bank has 
no trace of the appropriate b value and would grant the refund. Fortunately, this would 
not be in Alice's interest, since she would get a smaller refund than she is entitled to. 

The last k - j major terms prevent Alice from using the check more than once, 
Even if the purchase amount is exactly the same. As in section one, the shopkeeper 
could present a random challenge or every shopkeeper has a probe sequence for these 
k - j terms chosen from a code with large Hamming distance. 

Alice does however, have a good chance of successfully cheating the bank with 
respect to the refund. All she needs is two unrelated major and minor terms. Still, 
this type of cheating is far less dangerous than having an open check that can be used 
over and over again. The bank could penalize Alice whenever it detects an attempt at 
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cheating, negating AJice’s expected profit from cheating attempts. A variation would 
allocate two major terms per denomination, making the probability of cheating much 
smaller. 

4. Blacklisting Withdrawals 

It may be desirable that if Alice uses a coin twice then the bank can blacklist a l l  of the 
coins Alice has withdrawn. Obviously, this means that all her coins must be related in 
some manner. The idea is to  encrypt some redundancy in Alice’s “random” choices; 
this redundancy can be recognized only when Alice spends a coin more than once. 
Alice’s privacy is thus protected only computationally, not unconditionally. 

Consider the basic scheme: Alice sends the bank k blinded candidates of the form 
r3f(g(a, c),g(u @ (uII(v + i ) ) ,d))  where a,  c and d are chosen at random by Alice, v is 
Alice’s counter, i is the candidate serial number and u is Mice’s account number. We 
modify the protocol so that Alice generates b electronic coins simultaneously. 

Alice sends the bank bk blinded candidates as a matrix 

The bank ask’s to see k / 2  columns in their entirety. Each Bij should be of the 
form 

r ~ j f ( g ( a i j , c i j ) , g ( a i j  @ (ullkjll(v t k i  t j ) ) y & j ) ) *  

Alice chooses ~ j j ,  a; ,  at random per blinded term and chooses kj at random per column. 
Let {hl}  be a family of one-way functions. Each cij is of the form hlj(Gj)llcij;  

each d;j is of the form h ~ ~ ( d { ~ ) I l d { ~ .  Alice chooses cjj and d i j  at random per blinded 
term. 

The bank can easily verify that each of the k / 2  columns it sees is of the proper form. 
For notational simplicity, we assume that the bank asks to see columns k / 2  t 1,. . . , k. 
The bank then supplies Alice with b products 

and charges her account b dollars. 
Alice can then easily extract 
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Alice also arranges the factors into lexicographic sequence. 
These coins are used exactly as in the basic scheme, except that the shopkeeper 

has the set of blacklisted indices L .  If the merchant sends ej = 1, then Alice must 
reveal the appropriate a,c and y. The shopkeeper computes f(g(a,c),y) and checks 
that c = cf'IIc' does not satisfy c" = hl(c') for ad 1 E L. Similarly, if the shopkeeper 
sends e j  = 0, then Alice must reveal the appropriate z , a  @ (ullhjIl(v + ki t j ) )  and 
d = d"lld'. Again, the shopkeeper checks that d" # hl(d') for a l l  I E L.  

If Alice uses any coin more than once then the bank adds the appropriate revealed 
kj's  to the blacklist supplied to  the merchants. 

5. Further Work 

In forthcoming work, Chaum and Impagliazzo investigate formal requirements for the 
function f and den Boer has proposed suitable g's whose security is reducible to fac- 
toring or to discrete log. A good deal of progress has been made towards establishing 
the overall security of similar protocols [CE87]. Formal proofs for the protocols of this 
paper, however, remain an open challenge. 
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