
University of Virginia cs4501: Cryptocurrency Cafe February 2, 2015

Class 6: Proofs of Work

Schedule

• If you didn’t get full credit for Project 1 because of failure to post something interesting, you can (and
should!) redeem yourself and earn full credit by posting an interesting comment by Thursday. It
can be on (1) Discussion questions from Project 1 (2) notes from classes, or (3) general forum.

• Read: Chapter 6: The Bitcoin Network, Chapter 7: The Blockchain from Andreas Antonopoulos’
book. (Ideally, you should finish these before Wednesday’s class, but at the latest by Monday, 9 Feb.)

Trust

What are valid sources of trust?

What are invalid sources of trust?

What mechanisms have humans evolved or constructed to enhance trust among strangers?

Distributed Consensus

How well does the 2-out-of-3 network consensus public ledger protocol work?

https://github.com/aantonop/bitcoinbook/blob/develop/ch06.asciidoc
https://github.com/aantonop/bitcoinbook/blob/develop/ch07.asciidoc

cs4501: Cryptocurrency Class 6: Proofs of Work 2

Proof-of-Work

Cynthia Dwork and Moni Naor. Pricing via Processing or Combatting Junk Mail, CRYPTO 1992.

Pricing Function: (f) - moderately easy to compute - cannot be amortized - computing f (m1), ..., f (ml)
costs l times as much as computing f (mi). - easily verified: given x, y easy to check y = f (x).

Adam Back. Hash Cash Postage Implementation

Interactive Hashcash:
1. Sender to Receiver: Hello
2. Receiver to Sender: r (random nonce)
3. Sender to Receiver: x, Mail where x = f (r)
4. Receiver verifies x = f (r).

How well does this protocol work for sending mail?

Suppose we use SHA-256 for f ?

How can we make this protocol non-interactive?

Bitcoin Mining

Proof-of-work: Find an x such that: SHA-256(SHA-256(r + x)) < T/d.

d is the “difficulty” (varies).
T is a fixed target (256-bit number).
r depends on hash of previous block, transactions, and other information.

What does it mean for the bitcoin difficulty to go down?

http://www.hashcash.org/papers/announce.txt

cs4501: Cryptocurrency Class 6: Proofs of Work 3

BitcoinMiner (code from core Bitcoin implementation)

//
// ScanHash scans nonces looking for a hash with at least some zero bits.
// The nonce is usually preserved between calls, but periodically or if the
// nonce is 0xffff0000 or above, the block is rebuilt and nNonce starts over at
// zero.
//
bool static ScanHash(const CBlockHeader *pblock, uint32_t& nNonce, uint256 *phash)
{

// Write the first 76 bytes of the block header to a double-SHA256 state.
CHash256 hasher;
CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss << *pblock;
assert(ss.size() == 80);
hasher.Write((unsigned char*)&ss[0], 76);

while (true) {
nNonce++;

// Write the last 4 bytes of the block header (the nonce) to a copy of
// the double-SHA256 state, and compute the result.
CHash256(hasher).Write((unsigned char*)&nNonce, 4).Finalize((unsigned char*)phash);

// Return the nonce if the hash has at least some zero bits,
// caller will check if it has enough to reach the target
if (((uint16_t*)phash)[15] == 0)

return true;

// If nothing found after trying for a while, return -1
if ((nNonce & 0xfff) == 0)

return false;
}

}

BitcoinMiner: (excerpted, most error checking code removed)

void static BitcoinMiner(CWallet *pwallet)
{

SetThreadPriority(THREAD_PRIORITY_LOWEST);
CReserveKey reservekey(pwallet);
unsigned int nExtraNonce = 0;

try {
while (true) {

// Create new block
unsigned int nTransactionsUpdatedLast = mempool.GetTransactionsUpdated();

https://github.com/bitcoin/bitcoin/blob/master/src/miner.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/miner.cpp#L438

cs4501: Cryptocurrency Class 6: Proofs of Work 4

CBlockIndex* pindexPrev = chainActive.Tip();

auto_ptr<CBlockTemplate> pblocktemplate(CreateNewBlockWithKey(reservekey));
CBlock *pblock = &pblocktemplate->block;
IncrementExtraNonce(pblock, pindexPrev, nExtraNonce);

int64_t nStart = GetTime();
arith_uint256 hashTarget = arith_uint256().SetCompact(pblock->nBits);
uint256 hash;
uint32_t nNonce = 0;
while (true) {

// Check if something found
if (ScanHash(pblock, nNonce, &hash))
{

if (UintToArith256(hash) <= hashTarget)
{

// Found a solution
pblock->nNonce = nNonce;
assert(hash == pblock->GetHash());

SetThreadPriority(THREAD_PRIORITY_NORMAL);
LogPrintf("proof-of-work found \n hash: %s \ntarget: %s\n",

hash.GetHex(), hashTarget.GetHex());
ProcessBlockFound(pblock, *pwallet, reservekey);
SetThreadPriority(THREAD_PRIORITY_LOWEST);
break;

}
}

if (nNonce >= 0xffff0000) break;
// ... other breaking conditions elided
// Update nTime every few seconds
UpdateTime(pblock, pindexPrev);

}
}

}
catch (const boost::thread_interrupted&)
{

LogPrintf("BitcoinMiner terminated\n");
throw;

}
}

David Evans Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://bitcoin-class.org

http://bitcoin-class.org

	Schedule
	Trust
	
	
	
	Distributed Consensus
	
	
	Proof-of-Work
	
	
	
	Bitcoin Mining
	

