
University of Virginia cs4501: Cryptocurrency Cabal November 2, 2015

Midterm Exam

The midterm exam will be in class, Wednesday, 21 October. The midterm will be closed-resources, but
is meant to test understanding, not memorization.

The midterm covers: Classes 1-15, Checkups 1-2, Problem Sets 1-2, and the assigned readings: Chapters
1, 2, 3, and 5 from Bitcoin and Cryptocurrency Technologies; Chapters 1, 2, 3, 4, 6, and 7 from Mastering
Bitcoin: Unlocking Digital Cryptocurrencies; Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash
System; Ittay Eyal and Emin Gün Sirer, Majority is not Enough: Bitcoin Mining is Vulnerable.

The first two questions on the midterm will ask you to comment on the technical validity of some
statements in the Congressional Research Service report (in the first 8 pages, not the policy issues).

Extra Office Hours. There will be some additional office hours this week:

• Monday, 5-6:30pm (Ori, Rice 442)
• Tuesday, 2-3:30pm (Dave, Rice 507) (Added)
• Tuesday, 3:30-4:30pm (Samee, Rice 442) (Added)
• Wednesday, 3:30-4:30pm (Samee, Rice 442)
• Thursday, 2:30-3:30 (Dave, Rice 507)

Scripting Transactions

Download the slides

Recall from class 12: Transaction outputs in bitcoin are protected by locking scripts, and must be unlocked
by unlocking scripts. A transaction output is not unlocked unless an unlocking script is provided such
that the result of executing the unlocking script, followed by executing the locking script, is a stack with
value True on top.

OP_IF statements OP_ENDIF - If the top of the stack is 1, executes statements. Otherwise does nothing.

OP_CHECKSIG - Pops two items from the stack, publickey and sig. Verifies the entire transaction (known
from node state, not the stack) using the publickey and sig. If the signature is valid, push 1; otherwise, 0.

OP_1 OP_DUP OP_ADD OP_DUP OP_SUB OP_VERIFY

The most common locking script (send to public address):

OP_DUP
OP_HASH160
OP_DATA20 (bitcoin address)
OP_EQUALVERIFY
OP_CHECKSIG

What must be on the stack for the locking script to succeed (end with 1 on top of stack)?

https://piazza.com/princeton/spring2015/btctech/resources
https://github.com/aantonop/bitcoinbook
https://github.com/aantonop/bitcoinbook
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://arxiv.org/pdf/1311.0243v5.pdf
https://www.fas.org/sgp/crs/misc/R43339.pdf
/classes/class15-post.pptx


cs4501: Cryptocurrency 2

OP_HASH160
20-byte hash
OP_EQUAL

What must be on the stack for the locking script above (“Pay-to-Script-Hash”) to succeed?

According to Most Popular Transaction Scripts (analysis of all transactions in first 290,000 blocks), the
ninth most popular script is:

OP_RETURN
OP_DATA_40

What must be on the stack for the OP_RETURN OP_DATA_40 locking script to succeed (end with 1 on top of
stack)? (Trick question: what happens to the coin protected by this locking script?)

BTCD Code

Type: Script is the virtual machine the executes scripts (note that it has two Stacks)

Execute a script: Execute
Execute one instruction: Step

Opcodes: exec function executes one instruction

Some interesting opcode implementations: OP_IF, OP_RETURN

Bitcoin Core Code

script/interpreter.cpp, OP_DUP, Crypto, OP_CHECKSIG

Links

Script Playground

Some interesting things you can do with bitcoin scripts:
Contracts (see also Nick Szabo’s Formalizing and Securing Relationships on Public Networks
Secure Multiparty Computations (to implement lotteries)

The OP_RETURN/pasted script execution bug doesn’t even make this list of The 9 Biggest Screwups in
Bitcoin History.

David Evans and Samee Zahur Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://bitcoin-class.org

http://www.quantabytes.com/articles/a-survey-of-bitcoin-transaction-types
https://github.com/btcsuite/btcd/blob/c153596542b3d87dd774c29aa5be5117ac01a234/txscript/script.go#L206
https://github.com/btcsuite/btcd/blob/c153596542b3d87dd774c29aa5be5117ac01a234/txscript/script.go#L723
https://github.com/btcsuite/btcd/blob/c153596542b3d87dd774c29aa5be5117ac01a234/txscript/script.go#L782
https://github.com/btcsuite/btcd/blob/c153596542b3d87dd774c29aa5be5117ac01a234/txscript/opcode.go#L38
https://github.com/btcsuite/btcd/blob/c153596542b3d87dd774c29aa5be5117ac01a234/txscript/opcode.go#L971
https://github.com/btcsuite/btcd/blob/c153596542b3d87dd774c29aa5be5117ac01a234/txscript/opcode.go#L1143
https://github.com/btcsuite/btcd/blob/c153596542b3d87dd774c29aa5be5117ac01a234/txscript/opcode.go#L1235
https://github.com/bitcoin/bitcoin/blob/41e6e4caba9899ce7c165b0784461c55c867ee24/src/script/interpreter.cpp
https://github.com/bitcoin/bitcoin/blob/41e6e4caba9899ce7c165b0784461c55c867ee24/src/script/interpreter.cpp#L524
https://github.com/bitcoin/bitcoin/blob/41e6e4caba9899ce7c165b0784461c55c867ee24/src/script/interpreter.cpp#L752
https://github.com/bitcoin/bitcoin/blob/41e6e4caba9899ce7c165b0784461c55c867ee24/src/script/interpreter.cpp#L785
http://www.crmarsh.com/script-playground/
https://en.bitcoin.it/wiki/Contracts
http://szabo.best.vwh.net/formalize.html
http://eprint.iacr.org/2013/784
http://www.coindesk.com/9-biggest-screwups-bitcoin-history/
http://www.coindesk.com/9-biggest-screwups-bitcoin-history/
http://bitcoin-class.org

	Midterm Exam
	Scripting Transactions
	
	
	
	BTCD Code
	Bitcoin Core Code
	Links


